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We consider an algebraic closure operator induced by orthogonality on an 
arbitrary set and we investigate some problems with regard to the orthomodular 
law for a complete lattice of dosed subsets. 

The basic idea of  our approach is the arrangement of  a representation 
of  a complete lattice by an algebraic closure operator,  more precisely by a 
lattice of  closed subsets. There is a modification (Birkhoff, 1967) for 
complete ortholattices based on a closure operator  induced by the orthog- 
onality relation. The formal definition is: 

Let V be an arbitrary nonempty set with a relation of  orthogonality 
(we will use designation _L) such that we require symmetricity and irreflex- 
ivity (i.e., x _1_ y ,~  y _1_ x and Vx e V, x I x is not true). 

A closure operator  on the system of  all subsets o f  V is defined 
CL(A) = A • such that A ' =  { z e V ;  V x ~ A ,  x .1_ z}.  It is easy to see that 
CL is closure operator: A ~ CL(A) and CL2(A) = CL(A) and A _ B 
CL(A) _ CL(B). 

The reader can find in Birkhoff (1967) that the system of  all closed 
subsets (the sets which are equal to its closure) forms a complete ortholat- 
rice. The problem of  representation of  an arbitrary complete ortholattice is 
investigated in McLaren (1964). In our approach we describe another 
representation such that our representation is "maximal"  in some sense. 
Let us use the language of  graph theory. 
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The complete graph is a graph such that every couple (x, y} is in the 
edge set. 

Any orthogonality relation can be represented by graph with vertex set 
the basic set of orthogonality and x is orthogonal to y is represented by the 
edge {x, y}. 

The relation of complementarity is defined: (G1, El) and (G2, E2) are 
complementary graphs if G1 = G2 is the relation between vertex sets and 
sets of edges E1 and E2 form a decomposition of the set of edges of a 
complete graph with vertex set G~ = (72. An induced subgraph is a restric- 
tion of graph (G, E) to (H, F) such that H _~ G and F = E/H. The relation 
between graphs (G, E) ~ (H, F) if there is an isomorphic copy of (G, E) as 
an induced subgraph of (H, F) is a pseudoorder relation (i.e., antisymmetry 
is not required). We will use this relation on finite graphs and in case of 
finite graphs antisymmetry holds if we do not distinguish isomorphic 
graphs. 

We start from an arbitrary complete ortholattice (L, <, ', 0, 1). We 
define the orthogonality relation on L - {0, 1 }: 

It is known (Zapatrin, 1990) that the lattice of closed subsets induced by 
this orthogonality relation is an isomorphic copy of the starting lattice. 

If we start from an arbitrary orthogonality relation to a lattice of 
closed subsets and apply our procedure of creation of a "new" orthogonal- 
ity relation on this lattice, we obtain an orthogonality relation such that the 
starting relation is an induced subgraph of the terminating relation. The 
embedding map is: x ~ {x} • 

This is an exact formulation of the fact that there is a "maximal" 
orthogonality relation in a system of all orthogonality relations with the 
same lattice of closed subsets. 

There are representations of an arbitrary complete ortholattice such 
that every element a of lattice is a joint of a set of join-irreducible elements 
which are smaller than a (McLaren, 1964; Zapatrin, 1990, n.d.). If we 
assume the existence of this system of join-irreducible elements for every 
element, we obtain a "minimal" orthogonality relation in the sense of 
induced subgraphs. 

If we try to analyze the system of all orthogonality relations belonging 
to some complete ortholattice, the question of isolated points of the 
orthogonality relation can be posed. There is only one closed set in a lattice 
of closed subsets with the property "an isolated point is element of this 
set." It is the maximal set of the lattice of closed subsets. This implies that 
we can remove isolated points without influence on the terminating lattice. 
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The relation on V [(V, Z) is the set with orthogonality] defined by 

x = y  {x}" = {y} l  

is a relation of equivalence. This equivalence relation is compatible with 
orthogonality and there is a natural way to factorize the starting system 
with orthogonality. We obtain closed subsets in a "new" system with 
orthogonality from "old" closed subsets. The basic idea is the following: 
For every closed subset A of V and for every class [x] of equivalence 
relation the fact that the intersection of these sets is nonempty implies that 
Ix] is stibset of A. Closed subsets are unions of equivalence classes. A 
"new" closed subset of the factor system is a set of classes contained in the 
"old" closed subset. This mapping is an ortholattice isomorphism. This 
conclusion allows us to remove redundant points from the graph of the 
orthogonality relation. 

We can pose the universal assumption for this article: We will consider 
orthogonality relations without isolated points and without redundant 
points in the sense of the above factorization. 

Example 1. We consider a lattice of all subsets of X with card(X) = 3. 
There are four orthogonality relations with this lattice as result. They are 
represented by diagrams 

I II III IV 

Diagram I is the minimal relation obtained from joint-irreducible 
elements. Diagram II is the maximal relation obtained by the construction 
described above. Diagrams III and IV are diagrams contained in II and 
containing I. If we analyze the interval of graphs with respect to the order 
relation induced by induced subgraphs, we obtain that these four relations 
are all relations in an interval bounded by I and II. 

We try to solve the problem to characterize those lattices whose system 
orthogonality relations are in the interval between the minimal relation 
obtained by joint-irreducible elements and the maximal relation obtained 
by the procedure described above. The solution is: A class of all finite 
ortholattices is a class with this quality. 

The proof of this proposition is: If we take an induced subgraph of 
some graph and we create both lattices of closed subsets, the lattice induced 
by the subgraph is an isomorphic copy of a certain subposet of the lattice 
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of the starting graph. Isomorphism is considered in the sense of the 
theory of posets; we do not assume a sublattice or subortholattice. The 
embedding map is an "identitylike" map. The image of the orthocomple- 
ment is greater than or equal to the orthocomplement of the image of the 
starting element. 

If there is an orthogonality system between the minimal and maximal 
system in the sense of ordering on graphs such that the lattice L2 is other 
than the lattice of the maximal and minimal graphs of orthogonality (it is 
the same lattice L1), then there are embeddings tp: L 1 --~ L 2 and ~: L 2 ~ L1 
and this implies in the case of finite lattices that L1 and L2 are isomorphic 
posets and the not preserving of the orthocomplement implies the existence 
of a chain of infinite cardinality--contradiction. Lattices L~ and L2 must 
be orthoisomorphic. This completes the proof. 

There is the natural question of enlarging the class of finite lattices to 
a more general class. There is a counterexample in a class of ortholattices 
with cardinality of all chains bounded by 4. It is a horizontal sum of 
countably many of algebras of type 23 and the horizontal sum of the above 
lattice with algebra of type 22. There is an orthogonality relation of the last 
lattice in the interval of orthogonalities of first lattice. Enlargement is not 
too substantial. 

This reflection warrants the following procedure: We start from an 
arbitrary finite graph, we create a lattice of dosed subsets (it is finite); 
we find a system of all joint-irreducible elements of the last lattice and 
we consider this system with natural orthocomplementation as a 
representation of this lattice by the graph. The graphic form of the 
last system with orthogonality is well known, the so-called Greechie 
diagram. 

There is an important algebraic property for quantum logic applica- 
t i o n s - t h e  orthomodular law. The problem of testing orthomodularity was 
posed and partly solved by Zapatrin (1990, n.d.). In our approach the 
problem can be formulated: If we start from the orthogonality system and 
we use the procedure described above, what is the danger of a "bad" choice 
of the starting orthogonality system for obtaining an ortholattice which is 
orthomodular? 

In the language of graph theory a nice characterization is considered a 
characterization by forbidden subgraphs. This nice characterization is not 
possible in this case. We will use the notion of a clique: A clique is a 
maximal complete subgraph of a graph. 

Proposition 1. If there are two cliques of cardinality 2 with common 
element, then the induced lattice is not orthomodular. 
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Proof. We denote these cliques {a, b} and {b, c}. Now a~{b} J-. Simi- 
larly c~{b} • The orthomodularity law implies {a} •177 = {b}• {c} •177 We 
compute 

{b} • = ({a} •177 u [{b} • n {a}•177177 

{a, b} is a clique, which implies {b} • n {a} • = gO and we use the property 
of closure to finish the proof. The conclusion is in contradiction with the 
universal assumption ( - )  --factorization. 

This criterion is very understandable, but it is not too effective. The 
next criterion may be induced from the notion of the interior of  a subset of 
a set with orthogonality. The definition of the interior is 

Int(A) = (A) C•177 

where (A) C is the set-theoretic complement of A in 11. 
We omit detailed reflection about the interior. This operator allows us 

to introduce a lattice of open subsets (i.e., it is equal to its interior). A 
lattice of open subsets is isomorphic to a lattice of closed subsets and both 
form the dual couple of subposets of the power set of the basic set II. Every 
set such that A • = A ~ is an element of intersection of  systems of closed and 
open subsets. The subsets with the last property we call strongly regular. 
The subsets from the intersection of systems of closed and open subsets we 
call regular (interior is equal to closure). 

Proposition 2. If  a system with orthogonality contains a regular subset 
which is not strongly regular, then the lattice of closed subsets is not 
orthomodular. 

Proof. Let A be a subset which is regular but not strongly regular. 
This implies A ~•177 h A •  gO. From the orthomodularity law we compute 
A t • 1 7 7  A • which is in contradiction with the assumption that A is not 
strongly regular. We conclude the falsity of orthomodularity law. 

This criterion is stronger than the first criterion, but there are impor- 
tant cases in which it is not effective. 

Example 2. Let (1I, _1_) be a system with orthogonality induced by the 
Greechie diagram of 4-loop of algebras of type 2 3. By a lemma of Greechie, 
the orthomodular poset with this diagram is not a lattice. A lattice of 
closed subsets is an ortholattice, but it is not orthomodular. Strongly 
regular sets are only gO and 1,I, and regular sets similarly. Cliques of 
cardinality 2 do not exist. Both criteria are not effective. 

We obtain a partial solution of the orthomodularity problem by the 
assumption of  the existence of finite common delimitation of the cardinal- 
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ity of cliques. Our hypothesis is that there exist forbidden subgraphs for 
orthomodularity in a class of bounded cardinality of cliques. 

By routine computing we can verify the following propositions: 
(i) In an orthomodular lattice it is not possible to find a chain with 

length greater than the maximum of the cardinality of cliques. 
(ii) If there are 3 cliques such that C2 - C1 u C3, then 

c l  n c3  = ~ = ( c ,  - c 2 )  • ( c3  - Q )  

must be a clique under the assumption of the orthomodularity law. 
By direct verification for the delimitation of the cardinality of cliques 

2 and 3, respectively, we obtain the following forbidden subgraphs: 

Case 2 Case 3 

and these assumptions are sufficient. 
Open problem: To find a counterexample for the hypothesis that the 

assumptions described above are sufficient or to prove the hypothesis. 
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